來(lái)源:網(wǎng)絡(luò)資源 2023-08-05 21:47:24
因式分解與整式乘法是互逆的運(yùn)算,是學(xué)好代數(shù)的基礎(chǔ)之一,希望同學(xué)給以足夠的重視。因式分解的每一步都必須是恒等變形,必須進(jìn)行到每一個(gè)多項(xiàng)式因式都不能再分解為止。
▲提公因式法
如果一個(gè)多項(xiàng)式的各項(xiàng)都含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式。
▲應(yīng)用公式法
由于分解因式與整式乘法有著互逆的關(guān)系,如果把乘法公式反過(guò)來(lái),那么就可以用來(lái)把某些多項(xiàng)式分解因式。如,和的平方、差的平方
▲分組分解法
要把多項(xiàng)式am+an+bm+bn分解因式,可以先把它前兩項(xiàng)分成一組,并提出公因式a,把它后兩項(xiàng)分成一組,并提出公因式b,從而得到a(m+n)+b(m+n),又可以提出公因式m+n,從而得到(a+b)(m+n)
▲十字相乘法(經(jīng)常使用)
▲配方法
對(duì)于mx +px+q形式的多項(xiàng)式,如果a×b=m,c×d=q且ac+bd=p,則多項(xiàng)式可因式分解為(ax+d)(bx+c)對(duì)于那些不能利用公式法的多項(xiàng)式,有的可以利用將其配成一個(gè)完全平方式,然后再利用平方差公式,就能將其因式分解。
▲拆、添項(xiàng)法
可以把多項(xiàng)式拆成若干部分,再用進(jìn)行因式分解。
▲換元法
有時(shí)在分解因式時(shí),可以選擇多項(xiàng)式中的相同的部分換成另一個(gè)未知數(shù),然后進(jìn)行因式分解,最后再轉(zhuǎn)換回來(lái)。
▲求根法
令多項(xiàng)式f(x)=0,求出其根為x ,x ,x ,……x ,則多項(xiàng)式可因式分解為f(x)=(x-x )(x-x )(x-x )……(x-x )
▲圖像法
令y=f(x),做出函數(shù)y=f(x)的圖象,找到函數(shù)圖象與X軸的交點(diǎn)x ,x ,x ,……x ,則多項(xiàng)式可因式分解為f(x)=(x-x )(x-x )(x-x )……(x-x )
▲主元法
先選定一個(gè)字母為主元,然后把各項(xiàng)按這個(gè)字母次數(shù)從高到低排列,再進(jìn)行因式分解。
▲利用特殊值法
將2或10代入x,求出數(shù)P,將數(shù)P分解質(zhì)因數(shù),將質(zhì)因數(shù)適當(dāng)?shù)慕M合,并將組合后的每一個(gè)因數(shù)寫(xiě)成2或10的和與差的形式,將2或10還原成x,即得因式分解式。
▲待定系數(shù)法
首先判斷出分解因式的形式,然后設(shè)出相應(yīng)整式的字母系數(shù),求出字母系數(shù),從而把多項(xiàng)式因式分解。
編輯推薦:
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看