中考網(wǎng)
全國站
快捷導(dǎo)航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分?jǐn)?shù)線 中考志愿填報(bào) 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
您現(xiàn)在的位置:中考 > 初中數(shù)學(xué) > > 正文

2023年初中數(shù)學(xué)圓的知識(shí)點(diǎn)歸納

來源:網(wǎng)絡(luò)資源 2023-01-18 20:58:56

中考真題

智能內(nèi)容

1.不在同一直線上的三點(diǎn)確定一個(gè)圓

2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2

圓的兩條平行弦所夾的弧相等

3.圓是以圓心為對稱中心的中心對稱圖形

4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

7.同圓或等圓的半徑相等

8.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

10.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

11.定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對角

12. ①直線L和⊙O相交 d

②直線L和⊙O相切 d=r

③直線L和⊙O相離 d>r

13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

14.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑

15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

16.推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

17.切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角

18.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角

19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

20. ①兩圓外離 d>R+r

②兩圓外切 d=R+r

③兩圓相交 R-rr)

④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

21.定理相交兩圓的連心線垂直平分兩圓的公共弦

.

22定理把圓分成n(n≥3):

⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

23.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 關(guān)注我們,搜微信公眾號(hào):chzhshuxue

24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

25.定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

27.正三角形面積√3a/4 a表示邊長

28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

29.弧長計(jì)算公式:L=n兀R/180

30.扇形面積公式:S扇形=n兀R^2/360=LR/2

31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

34.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

圖片

圖片

參考答案:

1.B;2.A;3.B;4.C;5.A

   歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學(xué)習(xí)社
    中考網(wǎng)官方服務(wù)號(hào)

熱點(diǎn)專題

  • 2024年全國各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時(shí)間專題

[2024中考]2024中考分?jǐn)?shù)線專題

[2024中考]2024中考逐夢前行 未來可期!

中考報(bào)考

中考報(bào)名時(shí)間

中考查分時(shí)間

中考志愿填報(bào)

各省分?jǐn)?shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長必讀

中考提分策略

重點(diǎn)高中

北京重點(diǎn)中學(xué)

上海重點(diǎn)中學(xué)

廣州重點(diǎn)中學(xué)

深圳重點(diǎn)中學(xué)

天津重點(diǎn)中學(xué)

成都重點(diǎn)中學(xué)

試題資料

中考壓軸題

中考模擬題

各科練習(xí)題

單元測試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽中考大事記

濟(jì)南中考大事記

知識(shí)點(diǎn)

初中數(shù)學(xué)知識(shí)點(diǎn)

初中物理知識(shí)點(diǎn)

初中化學(xué)知識(shí)點(diǎn)

初中英語知識(shí)點(diǎn)

初中語文知識(shí)點(diǎn)

中考滿分作文

初中資源

初中語文

初中數(shù)學(xué)

初中英語

初中物理

初中化學(xué)

中學(xué)百科