來源:網(wǎng)絡(luò)資源 2021-09-29 11:23:00
8年級下冊數(shù)學(xué)輔導(dǎo)相似圖形 第四章相似圖形
一、定義表示兩個比相等的式子叫比例.如果a與b的比值和c與d的比值相等,那么或a∶b=c∶d,這時組成比例的四個數(shù)a,b,c,d叫做比例的項,兩端的兩項叫做外項,中間的兩項叫做內(nèi)項.即a、d為外項,c、b為內(nèi)項.如果選用同一個長度單位量得兩條線段AB、CD的長度分別是m、n,那么就說這兩條線段的比(ratio)AB∶CD=m∶n,或?qū)懗?,其中,線段AB、CD分別叫做這兩個線段比的前項和后項.如果把表示成比值k,則=k或AB=kCD.四條線段a,b,c,d中,如果a與b的比等于c與d的比,即,那么這四條線段a,b,c,d叫做成比例線段,簡稱比例線段.黃金分割的定義:在線段AB上,點C把線段AB分成兩條線段AC和BC,如果,那么稱線段AB被點C黃金分割(golden section),點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.其中0.618.引理:平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例.相似多邊形:對應(yīng)角相等,對應(yīng)邊成比例的兩個多邊形叫做相似多邊形.相似多邊形:各角對應(yīng)相等、各邊對應(yīng)成比例的兩個多邊形叫做相似多邊形.相似比:相似多邊形對應(yīng)邊的比叫做相似比.
二、比例的基本性質(zhì):1、若ad=bc(a,b,c,d都不等于0),那么.如果(b,d都不為0),那么ad=bc.2、合比性質(zhì):如果,那么.3、等比性質(zhì):如果==(b+d++n0),那么.4、更比性質(zhì):若那么.5、反比性質(zhì):若那么
三、求兩條線段的比時要注意的問題:(1)兩條線段的長度必須用同一長度單位表示,如果單位長度不同,應(yīng)先化成同一單位,再求它們的比;(2)兩條線段的比,沒有長度單位,它與所采用的長度單位無關(guān);(3)兩條線段的長度都是正數(shù),所以兩條線段的比值總是正數(shù).
四、相似三角形(多邊形)的性質(zhì):相似三角形對應(yīng)角相等,對應(yīng)邊成比例,相似三角形對應(yīng)高的比、對應(yīng)角平分線的比和對應(yīng)中線的比都等于相似比.相似多邊形的周長比等于相似比,面積比等于相似比的平方.
五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL
六、相似三角形的判定方法,判斷方法有:1.三邊對應(yīng)成比例的兩個三角形相似;2.兩角對應(yīng)相等的兩個三角形相似;3.兩邊對應(yīng)成比例且夾角相等;4.定義法:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似.5、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似.在特殊的三角形中,有的相似,有的不相似.1、兩個全等三角形一定相似.2、兩個等腰直角三角形一定相似.3、兩個等邊三角形一定相似.4、兩個直角三角形和兩個等腰三角形不一定相似.
七、位似圖形上任意一對對應(yīng)點到位似中心的距離之比等于位似比.如果兩個圖形不僅是相似圖形,而且每組對應(yīng)點所在的直線都經(jīng)過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫位似中心,這時的相似比又稱為位似比.
八、?贾R點:1、比例的基本性質(zhì),黃金分割比,位似圖形的性質(zhì).2、相似三角形的性質(zhì)及判定.相似多邊形的性質(zhì).
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看