證明題的思路:
很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。
對于證明題,有三種思考方式:
(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯。
同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。
例如:
可以有這樣的思考過程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。
(3)正逆結(jié)合。對于從結(jié)論很難分析出思路的題目,可以結(jié)合結(jié)論和已知條件認(rèn)真的分析。
初中數(shù)學(xué)中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c(diǎn),我們就要想到是否要連出中位線,或者是否要用到中點(diǎn)倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補(bǔ)形等等。正逆結(jié)合,戰(zhàn)無不勝。
證明題要用到
哪些原理?
要掌握初中數(shù)學(xué)幾何證明題技巧,熟練運(yùn)用和記憶如下原理是關(guān)鍵。
下面歸類一下,多做練習(xí),熟能生巧,遇到幾何證明題能想到采用哪一類型原理來解決問題。
一、證明兩線段相等
1.兩全等三角形中對應(yīng)邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或?qū)蔷被交點(diǎn)分成的兩段相等。
5.直角三角形斜邊的中點(diǎn)到三頂點(diǎn)距離相等。
6.線段垂直平分線上任意一點(diǎn)到線段兩段距離相等。
7.角平分線上任一點(diǎn)到角的兩邊距離相等。
8.過三角形一邊的中點(diǎn)且平行于第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.圓外一點(diǎn)引圓的兩條切線的切線長相等或圓內(nèi)垂直于直徑的弦被直徑分成的兩段相等。
11.兩前項(xiàng)(或兩后項(xiàng))相等的比例式中的兩后項(xiàng)(或兩前項(xiàng))相等。
12.兩圓的內(nèi)(外)公切線的長相等。
13.等于同一線段的兩條線段相等。
二、證明兩個角相等
1.兩全等三角形的對應(yīng)角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內(nèi)錯角或平行四邊形的對角相等。
5.同角(或等角)的余角(或補(bǔ)角)相等。
6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等于它所夾的弧對的圓周角。
7.圓外一點(diǎn)引圓的兩條切線,圓心和這一點(diǎn)的連線平分兩條切線的夾角。
8.相似三角形的對應(yīng)角相等。
9.圓的內(nèi)接四邊形的外角等于內(nèi)對角。
10.等于同一角的兩個角相等。
三、證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。
2.三角形中一邊的中線若等于這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。
4.鄰補(bǔ)角的平分線互相垂直。
5.一條直線垂直于平行線中的一條,則必垂直于另一條。
6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點(diǎn)在線段的垂直平分線上。
8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。
10.在圓中平分弦(或弧)的直徑垂直于弦。
11.利用半圓上的圓周角是直角。
歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看