中考網(wǎng)
全國(guó)站
快捷導(dǎo)航 中考政策指南 2024熱門中考資訊 中考成績(jī)查詢 歷年中考分?jǐn)?shù)線 中考志愿填報(bào) 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁(yè)
您現(xiàn)在的位置:中考 > 知識(shí)點(diǎn)庫(kù) > 初中數(shù)學(xué)知識(shí)點(diǎn) > 二次函數(shù) > 正文

2020初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié)及經(jīng)典例題講解

來(lái)源:網(wǎng)絡(luò)資源 2020-05-28 11:13:45

中考真題

智能內(nèi)容
  I.定義與定義表達(dá)式
 
  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax2+bx+c
 
 。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大)則稱y為x的二次函數(shù)。
 
  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
 
  II.二次函數(shù)的三種表達(dá)式
 
  一般式:y=ax2+bx+c(a,b,c為常數(shù),a≠0)
 
  頂點(diǎn)式:y=a(x-h)2+k[拋物線的頂點(diǎn)P(h,k)]
 
  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]
 
  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
 
  h=-b/2a k=(4ac-b2)/4a
 
  x,x2=(-b±√b2-4ac)/2a
 
  III.二次函數(shù)的圖像
 
  IV.拋物線的性質(zhì)
 
  1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。
 
  對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
 
  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b2)/4a)當(dāng)-b/2a=0時(shí),
 
  P在y軸上;當(dāng)Δ=b2-4ac=0時(shí),P在x軸上。
 
  3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。
 
  當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。|a|越大,則拋物線的開(kāi)口越小。
 
  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
 
  當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
 
  當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
 
  5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
 
  拋物線與y軸交于(0,c)
 
  6.拋物線與x軸交點(diǎn)個(gè)數(shù)
 
  Δ=b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
 
  Δ=b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
 
  Δ=b2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
 
  V.二次函數(shù)與一元二次方程
 
  特別地,二次函數(shù)(以下稱函數(shù))y=ax2+bx+c,
 
  當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax2+bx+c=0
 
  此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
 
  1.二次函數(shù)y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:
 
  當(dāng)h>0時(shí),y=a(x-h)2的圖象可由拋物線y=ax2向右平行移動(dòng)h個(gè)單位得到,
 
  當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
 
  當(dāng)h>0,k>0時(shí),將拋物線y=ax2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)2+k的圖象;
 
  當(dāng)h>0,k<0時(shí),將拋物線y=ax2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;
 
  當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;
 
  當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;
 
  因此,研究拋物線y=ax2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了。這給畫圖象提供了方便。
 
  2.拋物線y=ax2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b2]/4a).
 
  3.拋物線y=ax2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減。
 
  4.拋物線y=ax2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
 
  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
 
  (2)當(dāng)△=b2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0
 
  (a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|
 
  當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);
 
  當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.
 
  5.拋物線y=ax2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b2)/4a.
 
  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
 
  6.用待定系數(shù)法求二次函數(shù)的解析式
 
  (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般式:
 
  y=ax2+bx+c(a≠0).
 
  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)2+k(a≠0).
 
  (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
 
  7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn)。
 
  例題
 
 
  本題作為一個(gè)閱讀理解型題目,比較新穎,下面展示的答案是以“代數(shù)為突破口”,主要建立一次函數(shù)解析式,讀者可自行嘗試以幾何為突破口,建立A字形或8字形,列比例線段獲知所需結(jié)論,計(jì)算更為簡(jiǎn)易。

   歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學(xué)習(xí)社
    中考網(wǎng)官方服務(wù)號(hào)

熱點(diǎn)專題

  • 2024年全國(guó)各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時(shí)間專題

[2024中考]2024中考分?jǐn)?shù)線專題

[2024中考]2024中考逐夢(mèng)前行 未來(lái)可期!

中考報(bào)考

中考報(bào)名時(shí)間

中考查分時(shí)間

中考志愿填報(bào)

各省分?jǐn)?shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長(zhǎng)必讀

中考提分策略

重點(diǎn)高中

北京重點(diǎn)中學(xué)

上海重點(diǎn)中學(xué)

廣州重點(diǎn)中學(xué)

深圳重點(diǎn)中學(xué)

天津重點(diǎn)中學(xué)

成都重點(diǎn)中學(xué)

試題資料

中考?jí)狠S題

中考模擬題

各科練習(xí)題

單元測(cè)試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽(yáng)中考大事記

濟(jì)南中考大事記

知識(shí)點(diǎn)

初中數(shù)學(xué)知識(shí)點(diǎn)

初中物理知識(shí)點(diǎn)

初中化學(xué)知識(shí)點(diǎn)

初中英語(yǔ)知識(shí)點(diǎn)

初中語(yǔ)文知識(shí)點(diǎn)

中考滿分作文

初中資源

初中語(yǔ)文

初中數(shù)學(xué)

初中英語(yǔ)

初中物理

初中化學(xué)

中學(xué)百科