來源:網(wǎng)絡資源 作者:中考網(wǎng)整理 2020-04-22 19:51:42
一、選擇題的解法
1、直接法:根據(jù)選擇題的題設條件,通過計算、推理或判斷,,最后得到題目的所求。
2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學命題與字母的取值范圍有關;
在解這類選擇題時,可以考慮從取值范圍內選取某幾個特殊值,代入原命題進行驗證,然后淘汰錯誤的,保留正確的。
3、淘汰法:把題目所給的四個結論逐一代回原題的題干中進行驗證,把錯誤的淘汰掉,直至找到正確的答案。
4、逐步淘汰法:如果我們在計算或推導的過程中不是一步到位,而是逐步進行,既采用“走一走、瞧一瞧”的策略;
每走一步都與四個結論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個錯誤的結論就被全部淘汰掉了。
5、數(shù)形結合法:根據(jù)數(shù)學問題的條件和結論之間的內在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;
使數(shù)量關系和圖形巧妙和諧地結合起來,并充分利用這種結合,尋求解題思路,使問題得到解決。
二、常用的數(shù)學思想方法
1、數(shù)形結合思想:就是根據(jù)數(shù)學問題的條件和結論之間的內在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;
使數(shù)量關系和圖形巧妙和諧地結合起來,并充分利用這種結合,尋求解體思路,使問題得到解決。
2、聯(lián)系與轉化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉化的。數(shù)學學科的各部分之間也是相互聯(lián)系,可以相互轉化的。
在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。
如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
3、分類討論的思想:在數(shù)學中,我們常常需要根據(jù)研究對象性質的差異,分各種不同情況予以考查;
歡迎使用手機、平板等移動設備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看